MOLECULAR ORBITAL CALCULATIONS OF THE FIRST TRANSITION ENERGY OF SUBSTITUTED TROPYLIUM SALTS

G. V. BOYD

Department of Chemistry, Chelsea College of Science and Technology, London

and

N. SINGER Department of Chemistry, Northern Polytechnic, London

(Received 26 July 1965)

Abstract—The longest wave absorption band in the electronic spectra of 96 tropylium cations of varying complexity has been calculated by the simple MO-LCAO method, using parameters obtained earlier.¹ A good correlation between observed frequencies and calculated energy differences was obtained for all compounds except the tropylium cyanine dyes. The correlation within small groups of structurally similar cations is outstandingly good.

The simple HMO method has recently been applied¹ to a series of substituted pyrylium salts and a good correlation was found between the calculated differences in energy between the highest occupied and lowest unoccupied molecular orbitals (Δm) and the observed frequency ($\bar{\nu}$) of the longest wave absorption band in the electronic spectra of 65 pyrylium cations. In these calculations Coulomb and bond integrals were chosen so as to minimise deviations from the regression line. The results demonstrated the usefulness of the simple HMO method and gave a semi-quantitative interpretation of the electronic and steric effects of substituents on the first absorption band of complex pyrylium salts. We were thus encouraged to carry out a similar series of calculations for substituted tropylium salts. A summary of results and conclusions for 96 such salts is presented in this paper.

The electronic spectra of many tropylium ions, particularly alkyltropylium (azulenium) ions are available from the work of Heilbronner,²⁻⁷ Hafner,^{8,9} Reid^{10,11} and, more recently, Jutz.¹²⁻¹⁵ HMO calculations on restricted groups of such cations have been done and good correlations established between first transition energies

- ¹ G. V. Boyd and N. Singer, Tetrahedron 21, 1263 (1965).
- ^a L. H. Chopard-dit-Jean and E. Heilbronner, Helv. Chim. Acta 35, 2170 (1952).
- ⁸ W. H. Schaeppi, R. W. Schmid, E. Heilbronner and A. Eschenmoser, *Helv. Chim. Acta* 38, 1874 (1955).
- ⁴ W. Simon, G. Naville, H. Sulser and E. Heilbronner, Helv. Chim. Acta 39, 1107 (1956).
- ^b H. H. Rennhard, G. DiModica, W. Simon and E. Heilbronner, Helv. Chim. Acta 40, 957 (1957).
- ⁶ D. Meuche, W. Simon and E. Heilbronner, Helv. Chim. Acta 42, 452 (1959).
- ⁷ G. Naville, H. Strauss and E. Heilbronner, Helv. Chim. Acta 43, 1221 (1960).
- * K. Hafner, H. Pelster and J. Schneider, Liebigs Ann. 650, 62 (1961).
- * K. Hafner, H. W. Riedel and M. Danielisz, Angew. Chem. 75, 344 (1963).
- ¹⁰ E. C. Kirby and D. H. Reid, J. Chem. Soc. 1724 (1961).
- ¹¹ E. C. Kirby and D. H. Reid, J. Chem. Soc. 3579 (1961).
- ¹³ C. Jutz and F. Voithenleitner, Chem. Ber. 97, 29 (1964).
- ¹³ C. Jutz and F. Voithenleitner, Chem. Ber. 97, 1337 (1964).
- 14 C. Jutz, Chem. Ber. 97, 1349 (1964).
- ¹⁵ C. Jutz and F. Voithenleitner, Chem. Ber. 97, 1590 (1964).

and calculated energy differences, and between acidities and calculated localisation, energies.⁷

The tropylium salts considered in this work are classified in four main groups as set out in Table 1. This division follows that for the pyrylium salts except that no amino- or halogen-substituted salts are included as too few such compounds are reported in the literature. Further, Group I (unsubstituted cations) and Group II (alkyl-substituted cations) have been subdivided because, as will be shown below, rather good correlations exist in the sub-groups.

TABLE 1. CLASSIFICATION OF TROPYLIUM SALTS

Group I		Tropylium salts lacking alkyl and methoxy substituents (28 salts)
-	Α	Monocyclic tropylium salts with phenyl or phenyl(poly)vinyl substituents (9 salts)
	В	Monocyclic tropylium salts with polycyclic aryl or arylvinyl substituents (8 salts)
	С	Polycyclic tropylium salts (6 salts)
	D	Salts containing two or three seven-membered rings (cyanines) (4 salts)
Group II		Tropylium salts with alkyl substituents (44 salts)
•	Α	Alkyltropylium salts containing one seven-membered ring (33 salts)
	В	Alkyltropylium cyanines (11 salts)
Group III		Tropylium salts with methoxy substituents (21 salts)
Group IV		Tropylium salts with alkyl and methoxy substituents (3 salts)

In order to save space the cations are named in terms of a few structural types which are shown in Fig. 1. Tables 2-5 list the compounds together with the observed wave length of the first absorption band, the corresponding frequency and the calculated energy difference, Δm .

FIG. 1. Types of tropylium cations.

	No.	Formula (see Fig. 1.)	Ref.	λ _{max} (mμ)	ν̃ (cm ^{−1})	Δm (β)
	1	I	16	275	36,400	1.6920
(23	II, $n = 0$, $Ar = Ph$ II, $n = 1$, $Ar = Ph$	12 14	369 440	27,100 22,700	1·2004 0·8887
A que	4 5	II, $n = 2$, $Ar = Ph$ II, $n = 3$, $Ar = Ph$	15 15	493 539	20,300 18,600	0·6963 0·5707
sub-gro	6 7 8	II, $n = 4$, $Ar = Ph$ III, $n = 0$, $Ar = Ar' = Ph$ III. $n = 1$. $Ar = Ar' = Ph$	15 15 15	582 461 515	17,200 21,700 19,400	0·4831 0·7766 0·6145
	9 10	III, $n = 2$, $Ar = Ar' = Ph$ III, $n = 3$, $Ar = Ar' = Ph$	15 15	560 597	17,900 16,800	0•5106 0•4377
sub-group B	 11 12 13 14 15 16 17 18 	II, $n = 0$, $Ar = 2$ -naphthyl II, $n = 1$, $Ar = 1$ -naphthyl II, $n = 1$, $Ar = 2$ -naphthyl II, $n = 1$, $Ar = 2$ -naphthyl II, $n = 1$, $Ar = 9$ -phenanthryl II, $n = 1$, $Ar = 9$ -anthryl II, $n = 1$, $Ar = 3$ -pyrenyl II, $n = 0$, $Ar = 4$ -biphenylyl II, $n = 0$, $Ar = 3$ -biphenylyl	12 14 14 14 14 14 12 12	430 495 477 500 586 581 415 363	23,300 20,200 21,000 20,000 17,100 17,200 24,100 27,600	0-9464 0-7400 0-8018 0-7336 0-5514 0-6117 1-0042 1-0560
sub-group C	 19 20 21 22 23 24 	IV 3,4-benzo-IV 2,3-benzo-IV 5,6-benzo-IV 6,7-benzo-IV 6,7,8,9-dibenzo-IV	7 7 7 7 7 7	426 458 608 457 540 560	23,500 21,800 16,500 21,900 18,500 17,900	1.0281 0.9803 0.6717 0.9285 0.8237 0.8049
sub-group D	25 26 27 28	II, $n = 1$, $Ar = tropylidenemethyl$ II, $n = 1$, $Ar = 1$ -azulenyl VI, $n = 0$ VI, $n = 0$, $H = 1$ -azulenyl	9 9 8 8	604 632 617 634	16,600 15,800 16,200 15,800	0.6022 0.7118 0.7376 0.7620

Table 2. Calculated $\pi \rightarrow \pi^*$ transition energies (Δm) for tropylium ions of group I

METHOD OF CALCULATION

The symbols are those of our previous paper. The first transition energies, Δm , were computed directly from the unpartitioned secular determinants of the molecules on the University of London "Atlas" computer. The simple inductive model for alkyl-substituted cations was again employed. The parameters

$$\alpha_{\text{C-alkyl}} = \alpha_{\text{C}} - 0.3\beta_{\text{CC}}$$
$$\alpha_{\text{OMe}} = \alpha_{\text{C}} + 0.9\beta_{\text{CC}}$$
$$\beta_{\text{CO}} = 0.8\beta_{\text{CC}}$$

which gave the best fit for the pyrylium salts were also used in this study. It was found that the standard deviation from the best correlation line for the 72 molecules in Groups I and II was not very sensitive to a variation of h_{alkyl} from -0.1 to -0.9, and that the parameter -0.3 was in the optimum region. Similar remarks apply to the ¹⁴ W. von E. Doering and L. H. Knox, J. Amer. Chem. Soc. 76, 3203 (1954).

	No.	Formula (see Fig. 1.)	Ref.	λ_{\max} (m μ)	∛ (cm ^{−1})	Δm (β)
	(29	Me-I	17	288	34,700	1.6089
	30	V	2	352	28,500	1.0894
	31	3-Me-V	2	366	27,300	1.0041
	32	2-Me-V	2	370	27,000	1.0727
	33	6-Me-V	2	353	28,300	1.0895
	34	2,3-Me ₂ -V	2	382	26,200	0.9698
	35	4,8-Me ₁ -V	2	355	28,200	1.1137
	36	4,8-Me ₂ -6-Pr ¹ -V	2	354	28,300	1.1046
	37	4,8-Me ₂ -2-Pr ¹ -V	2	374	26,700	1-0939
	38	3,8-Me ₁ -V	2	362	27,600	1.0567
	39	3,8-Me ₁ -5-Pr ¹ -V	2	358	27,900	1-0886
	40	1-Me ₂ C: -V	8	432	23,200	1.0473
	41	1-Me _s C: -3-Pr ¹ -V	8	450	22,200	0.9516
	42	1-MeCH: -4,6,8-Me ₃ -V	11	440	22,700	1.0054
	43	1-MeCH: -3,8-Me ₁ -5-Pr ¹ -V	11	425	23,500	0.9660
dno	44	6-Me-IV	6	432	23,200	0.9936
ы́ (45	0,8-Me ₃ -IV	0	435	23,000	0.9020
-du	40	2,3-benzo-V	4	389	25,700	1.1228
S	47	3,0-00120-V	4	392	25,500	0.9303
	40	$\begin{array}{c} \text{II,} n = 0, \text{Ar} = 3\text{-tolyl} \\ \text{II,} n = 0, \text{Ar} = 4\text{-tolyl} \end{array}$	12	202	20,000	1.1607
	49	$\begin{array}{llllllllllllllllllllllllllllllllllll$	12	393	25,500	1.100/
	50	$\begin{array}{c} n = 1, Ar = 2 \text{-tolyl} \\ N = 1, Ar = 3 \text{-tolyl} \end{array}$	13	433	22,100	0.8853
	51	II, $n = 1$, $Ar = 3$ -tolyl	13	440	22,300	0.0033
	52	$\begin{array}{c} \mathbf{H} = \mathbf{I}, \mathbf{A} = -\mathbf{I} \\ \mathbf{H} = -\mathbf{I} \\ \mathbf{A} = -\mathbf{I} \\$	13	401	21,700	0.8656
	55	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13	473	21,100	0.8700
	55	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13	400	21,700	0.8638
	56	$\begin{array}{c} n = 1, n = 5, + x_{f}y_{f} \\ n = 1 Ar = mesity_{f} \end{array}$	13	463	21,600	0.8662
1	57	$H_{n} = 1, Ar = 4 \text{-tolyl}$	15	513	19 500	0.6881
	58	1.PhCH: -4.6.8-MeV	8	435	23,000	0.7781
	59	1-PhCH: -3.8-Me5-Pr ¹ -V	11	456	21,900	0.7337
	60	1-PhCH:CH: -4.6.8-MeV	8	485	20.600	0.6562
į	61	1-PhCH:CH·CH: -3,8-Me ₂ -5-Pr ¹ -V	11	513	19,500	0.6106
	(62	3-Me-VI, $n = 0$	10	634	15,800	0.6938
	63	$3,3'-Me_1-VI, n=0$	10	652	15,300	0.6598
	64	4,6,8-Me ₃ -VI, $n = 0$	10	627	16,000	0.7337
B	65	$3', 4, 6, 8-Me_4-VI, n = 0$	10	644	15,500	0.6275
d l	66	$4,4',6,6',8,8'-Me_8-VI, n = 0$	10	640	15,600	0.7313
£ (67	$3,8-Me_2-5-Pr^1-VI, n=0$	10	644	15,500	0.6937
ي آ	68	$3,3',8-Me_{a}-5-Pr^{i}-VI, n=0$	10	663	15,100	0.6619
ร	69	$3,4',6',8,8'-Me_{5}-Pr^{1}-VI, n=0$	10	653	15,300	0.6958
	70	$3,3',8,8'-Me_4-5,5'-Pr_2^1-VI, n=0$	10	680	14,700	0.6684
	71	$3,3',8-Me_8-5-Pr^1-VI, n=2$	11	842	11,900	0.4770
	72	$3,3',8,8'-Me_{4}-5,5'-Pr_{2}^{1}-VI, n=2$	11	860	11,600	0.4/21

TABLE 3. CALCULATED $\pi \rightarrow \pi^*$ transition energies (Δm) for tropylium ions of group II

¹⁷ H. J. Dauben, F. A. Gadecki, K. M. Harmon and D. L. Pearson, J. Amer. Chem. Soc. 79, 4557 (1957).

No.	Formula (see Fig. 1.)	Ref.	λ_{\max} (m μ)	ν̃ (cm ^{−1})	Δm (β)
73	MeO-I	17	315	31,800	1.1603
74	II, $n = 0$, $Ar = 4$ -methoxyphenyl	12	435	23,000	0.9210
75	II, $n = 0$, $Ar = 3$ -methoxyphenyl	12	356	28,100	0-9004
76	II, $n = 1$, $Ar = 2$ -methoxyphenyl	13	481	20,800	0.7625
77	II, $n = 1$, $Ar = 3$ -methoxyphenyl	13	448	22,300	0.8055
78	II, $n = 1$, $Ar = 4$ -methoxyphenyl	13	503	19,900	0.7552
79	II, $n = 1$, $Ar = 2,4$ -dimethoxyphenyl	13	539	18,600	0.7298
80	II, $n = 1$, $Ar = 2,5$ -dimethoxyphenyl	13	519	19,300	0.6346
81	II, $n = 1$, $Ar = 2,6$ -dimethoxyphenyl	13	501	20,000	0.7756
82	II, $n = 1$, $Ar = 3,4$ -dimethoxyphenyl	13	524	19,100	0.6442
83	II, $n = 1$, $Ar = 2,3,4$ -trimethoxyphenyl	13	513	19,500	0.6273
84	II, $n = 1$, $Ar = 2,4,5$ -trimethoxyphenyl	13	587	17,000	0.5903
85	II, $n = 1$, $Ar = 2,4,6$ -trimethoxyphenyl	13	557	18,000	0.7395
86	II, $n = 1$, $Ar = 3,4,5$ -trimethoxyphenyl	13	495	20,200	0.5910
87	II, $n = 1$, $Ar = 4$ -methoxy-1-naphthyl	14	568	17,600	0.6461
88	II, $n = 1$, $Ar = 2$ -methoxy-1-naphthyl	14	552	18,100	0.6728
89	II, $n = 2$, $Ar = 4$ -methoxyphenyl	15	550	18,200	0.6260
90	III, $n = 1$, $Ar = Ph$, $Ar' = 4$ -methoxypheny	l 15	557	18,000	0.5740
91	III, $n = 1$, $Ar = Ar' = 4$ -methoxyphenyl	15	587	17,000	0.5653
92	6-MeO-IV	5	450	22,200	0.8004
93	1,2,3,8-(MeO) ₄ -IV	3	491	20,400	0.5855

TABLE 4. CALCULA	TED $\pi \rightarrow \pi^*$	TRANSITION ENERGIES ((Δm) I	FOR TROPYLIUM IONS OF GROUP I	Π
------------------	-----------------------------	-----------------------	--------	-------------------------------	---

TABLE 5. CALCULATED $\pi \rightarrow \pi^{\bullet}$ TRANSITION ENERGIES FOR TROPYLIUM IONS C	OF GROUP I	. 1
--	------------	-----

No.			Formula (see Fig. 1.)	Ref.	λ _{max} (mμ)	ν̃ (cm ^{−1})	Δm (β)
94	II,	n = 1,	Ar = 4-methoxy-2-methylphenyl	13	508	19,800	0.7613
95	П,	n = 1,	Ar = 4-methoxy-3-methylphenyl	13	514	19,500	0.7323
96	II,	n = 1,	Ar = 2-methoxy-5-methylphenyl	13	498	20,100	0.7326

value 0.9 for h_{OMe} . We made no detailed study of the effect of varying the bond integral parameter, k_{OMe} ; but a series of computations showed that the correlation between the cations of Groups I and III could not be significantly improved by altering this parameter from the original value of 0.8.

The models of the unsubstituted cations (Group I) are straightforward and require no comment except to emphasis that co-planarity of the molecule is assumed. For the alkyl salts of Group II, which include many protonated azulenes, the more highly conjugated model of two possible tautomers was chosen³ except where such a form would be precluded by steric considerations. For example, 1-methylazulene in acid solution (31) is formulated as A rather than B because in A the methyl group is attached to the double bond. The model for the 1-methylazulenium ion is thus C.

On the other hand, the more highly conjugated of the two cations derived from 1,8dimethylazulene, D, may not be favoured over the tautomeric form E because in the latter the steric clash between the two methyl groups is relieved by bending one of them out of the molecular plane. Similar considerations apply to the 4,5-benzazulenium ion.⁴ Such ambiguous cases, as well as those in which the position of protonation cannot be readily predicted by considering the extent of conjugation, e.g. in the 4,7-dimethylazulenium ion (F or G), are not included in the calculations.

As before, we make no distinction between the various alkyl groups. This is justified by the constancy of the position of the long wave absorption band of the cations 44 and 45 at 432 and 434 m μ , respectively, as R varies from methyl through ethyl to propyl.⁶

RESULTS AND DISCUSSION

The calculated energy differences, Δm , are given in Tables 2–5. Equations of regression lines and standard deviations, σ , for the various groups are collected in Table 6.

We first consider the twenty-eight unsubstituted salts in Group I. Fig. 2 shows that the correlation between the observed frequency, $\bar{\nu}$, and Δm is not very impressive. It is, however, possible to subdivide the cations in this group into four sub-groups within which there are stronger structural similarities. These are: A, the phenyltropylium salts (structural types II and III, Ar = Ar' = Ph, Fig. 1); B, aryltropylium salts (II, $Ar \neq Ph$); and C, the annelated tropylium salts (IV). The correlations within these groups are excellent and the mean deviation from the best line never exceeds 630 cm⁻¹ in an observed frequency range of 20,000 cm⁻¹. The assignment of the tropylium ion itself to one of these groups is difficult but on structural grounds it seems to belong to sub-group C, because there are no bonds in these molecules about which rotation can occur. A correlation for cations of sub-group IC has already been established by Heilbronner et al.⁷ It is possible to continue the process of subdivision within the sub-groups so that only structurally very closely related compounds are considered to belong together. For example, the salts of sub-group IA may be divided into α -tropylium- ω -phenylpolyenes (2-6) and α -tropylium- ω , ω -diphenylpolyenes (7-10). If this is done the correlation within these smaller groups becomes really outstanding, σ being 125 cm⁻¹ for the first group, and 30 cm⁻¹ for the second. Even without this further subdivision, the mean deviation for sub-group 1A is only 180 cm^{-1} . Similarly, if in sub-group IB only cations containing a naphthalene, anthracene or phenanthrene residue are considered (11-15) the standard deviation is reduced to 100 cm^{-1} . Only one cation, *m*-biphenylyltropylium (18) does not fit the regression line for IB.

The four cyanine-like tropylium ions (25-28) are entirely different from the other ions of Group I and do not fit any of the three regression lines for this group.

The alkyltropylium salts of Group II (Fig. 3) exhibit a spread similar to that of the unsubstituted salts. The regression line for these cations is virtually identical with that for Group I, thus the simple inductive model for alkyl substituents is suitable for this type of calculation. Again, it was not found possible to correlate the properties of the eleven cyanine cations (62-72) with the other cations of their group.

The results for the twenty-one methoxy compounds of Group III, which are included in the final correlation graph (Fig. 4), are not as good as those previously considered. This group comprises cations in which the substituent is directly attached to the tropylium ring or to a substituent phenyl group, as well as salts with up to four methoxy substituents. The regression line for this group is much steeper than that for the previous groups and the slope could not be improved significantly to fit that of the other compounds by altering the value of the methoxy Coulomb and bond integrals.

Little comment can be made on Group IV (alkyl and methoxy substituents) as the spectra of only three such salts have been reported. The three points fit the final regression line rather well.

The final correlation is shown in Fig. 4. For all ninety-six cations the standard deviation is $1,970 \text{ cm}^{-1}$ in the observed frequency range of $22,000 \text{ cm}^{-1}$, i.e. almost 10%. If the fifteen cyanine salts are excluded the standard deviation for eighty-one

	Number of	Regress	ion line	
Group or sub-group	salts	a	ao	σ (cm ⁻¹)
I	28	16,000	7,700	1,900
IA + IB + IC + 1	24	15,400	8,600	1,500
IA	9	13,600	10,800	180
2-6	5	13,600	10,700	125
7–10	4	14,400	10,500	30
IB (excluding 18)	7	16,300	7,800	340
11-15	5	15,600	8,500	100
IC + 1	7	20,000	2,500	630
IIA	33	15,900	8,900	1,580
III	21	22,000	4,600	1,750
A11	96	19,000	5,500	1,970
Il (excluding ID and IIB)	81	16,600	8,200	1.630

Table 6. Regression lines ($\tilde{v} = a_1 \Delta m + a_0$) and standard deviations (σ)

cations is 1,630 cm⁻¹, 8% of the frequency range. The regression line for this case is $\bar{\nu} = 16,600 \Delta m + 8,200$

giving $\beta = -47.3$ kcal/mol⁻¹, and is in fair agreement with that obtained by Streitwieser¹⁸ for seventeen hydrocarbon anions and cations,

$$\ddot{v} = 16,000 \,\Delta m + 7,200$$

We conclude that the simple Hückel method is moderately successful when applied to such a great variety of structural types as are encountered here. The results obtained for the cations of Group I show that the method can become extremely reliable within more restricted series of closely related molecules.

¹⁸ A. Streitwieser Jr., *Molecular Orbital Theory for Organic Chemists* p. 229, J. Wiley, New York (1961).